

India

Improved soil carbon, soil health and soil fertility under grassland and cropland as well as integrated systems, including water management

Dr. Ch.Srinivasa Rao ICAR-National Academy of Agriculture Research Management (ICAR-NAARM)

director@naarm.org.in; cherukumalli2011@gmail.com

Success Story of Indian Agriculture Sector & Food Security

Sustainability @ Water @ Soil @ Environment @ Biodiversity @ Forest

@ 284 mt Food @ 300 mt Fruits & Vegetables; 8.5 times Milk; 43 times Eggs; 13 times Fish

Sustainable Development Indicators in India: Constraints

@ 7.5/1.30 billion 1
@ Small Holder Farmers
@ Rainfed Agriculture
@ Food Security
@ Livelihoods

@ Declining land
@ Declining water quality
@ Declining soil quality
@ Climate change and impacts

India

naarm

Sustainability of Food Systems in India with Soil Organic Carbon, Soil Health, Fertility

under grassland and cropland as well as integrated systems, including water management

@ Technologies,
@ Government Programs
@ Implementation Process
@ Innovative Models
@ Impacts

naarm

Technology Implementation and Government Programs

Soil Organic Carbon (SOC) Sequestration

Ø Soils of India & Tropical countries, SOC is very low: high temperatures & rain dependent Agri.
Ø SOC to Climate Adaptation particularly for droughts

- @ However, improving SOC in Tropical Semi-Aird and Arid Systems is a Challenge
- @ Therefore, the cost per Unit Increase in SOC in Tropical Country like India is Much Higher than Temperate Countries.
- @ Technology implementation in Small & Marginal Farmers in India & Others

Soil Health & Soil Organic Matter: Critical for Agri Sustainability

Partial factor productivity of NPK in finger millet in 30 years old long term experiment at Bangalore under rainfed conditions (1978-2007)

Advances in Agronomy (2013, 2015)

Promotion of Healthy Soils and Healthy Nation

भा .कृ .अनु .प - राष्ट्रीय कृषि अनुसंधान प्रबंध अकादमी ICAR-National Academy of Agricultural Research Management NAARM

naarm

Some of the easily implementable carbon

Recommended Management Practices for Carbon Sequestration

Principle	Practices
Creating positive ecosystem car budget	 Mulch farming Conservation agriculture Cover cropping Agroforestry
Reducing losses	 Erosion control Moderating mineralization by managing soil temperature, plant species and root:shoot ratio Increasing humification by improving C:N, C:P and C:S ratio Improving soil aggregation
Deep transfer of carbon	 Plants with deep root system Bioturbation (e.g., earthworm and termite activity)
Protecting soil carbon	 Increasing aggregation Decreasing soil disturbance Enhancing recalcitrance of biomass C
	Srinivasarao et al Advances in Soil Science (2015)

naarm

Enhanced Fertilizer Use Efficiency Reduced Input Cost, Improved Profits & Environmental Services: Technologies and Govt. India Programs

Nutrient	Efficiency percentage
N	30-50
Р	10-20
К	<80
S	8-12
Zn	2-5
Fe	1-2
Cu	1-2
Mn	1-2

@ Precision Nutrient Application @ Nano Fertilizers @ Soil Health Card Mission @ Neem Coasted Urea **@ Variable Rate of Technology** @ Placement of Nutrients @ Water-Nutrient Synergy **@ Promotion of N Fixing Crops** @ Organic Farming and **@ INM**

Crop Residue to Biochar For Carbon Sequestration, Drought Adaptation and Co-Benefits

@Per each ton of crop residue provides Nitrogen
5.5 kg; Sulphur 1.2 kg; Phosphorus (~40%) 2.3 kg;
Potash (~10%) 25.0 kg; Organic Carbon 400 kg.

@500 million tones of crop residue is available in India, comes 200 million tons of organic carbon.

@ Convert it Biochar or Energy Source ?

naarm

.•7

@ Technology support and Scale of Implementation Needs

naarm

Government Programs for Soil Health and Organic Carbon Improvement in Indian Soils

- 1) Promotion of Soil Health Card Mission with Organic Carbon Emphasis
- 2) Crop Residue Recycling (Climate Adaptation)
- 3) Mulch cum Manuring of Organic Residues for Climate Adaptation and Improved Soil Organic Matter (Climate Adaptation)
- 4) Tank Silt Recycling (Bring Back the Eroded Top Soil)
- 5) Promotion of Legume Cover Crops (Climate Adaptation
- 6) Intercrops with Legumes.
- 7) Conservation Agriculture Systems (Area Increasing)
- 8) Agro Forestry Systems (Area is Increasing)
- 9) Integrated Nutrient Management (Area Increasing)
- 10) Agri Horticulture Systems (Area Increasing)
- 11) Water Saving Rice Systems (Area Increasing)
- 12) Direct Seeded Rice (Area Increasing)

India to Improve Water Use Efficiency

India

1) Prime Minister Krishi Sinchai Yojana (Prime Minister Agriculture Irrigation Plan) for Improving Water Use Efficiency (More Crop Per Drop of Water; Micro-Irrigation Systems)

2) National Mission on Water

3) Rain Water Conservation and Utilization through Farm Ponds

Water Sensitive-Agri. Education in India

India

naarm

Community Participation is the Key for Rain Water Conservation and Recharging

House

tank

naarm

Important Strategy for Food Saving in India Towards Lowering Carbon Foot Print

Loss a kilogram of wheat and rice would mean wasting
 1,500 and 3,500 litres of water respectively that goes into
 their production.

- @ Globally, almost 250km3 of water and 1.4 billion hectares of land are devoted to producing food that is lost or wasted.
 @ According to Food and Agriculture Organization (FAO), every year around 1.7 billion tonnes, or almost one third of food produced for human consumption, are lost or wasted Globally.
- @ The associated economic, environmental and social costs of this loss are around \$1 trillion, \$700 billion and \$900 billion per year respectively.
- @ Carbon value of this 1.7 billion t food= 0.55 billion tonnes in the world.

Agro-Forestry and Forestry, Cover Crops, Wind Breaks besides Enhanced CO₂ Fixation Climate Adaptation

a National Agro-forestry Policy **Green-India Mission**

India

naarm

Integrated Farming System for Climate Resilient Agriculture and Food Production Systems

National Mission for Sustainable Agriculture

Critical Role of Technology Packaging in Rainfed Drylands (Soil-Water-Crops)

Local Ragi

ML365

Adaptation/Mitigation

- **@ Adaptation to Droughts: Resilient**
- **@ Household food and livelihoods: Enhanced**
- @ Village carbon balance: +
- **@ Co-Benefits of Mitigation**

भा .कृ .अनु .प - राष्ट्रीय कृषि अनुसंधान प्रबंध अकादमी ICAR-National Academy of Agricultural Research Management

Srinivasarao et al., Adv in Agronomy (2016)

Technology@ In-situ moistureconservation@ Land treatments@ Farm ponds@ Drought tolerant cultivar@ Soil test based nutrientsInstitutions@ VCRMC@ Seed bank@ Custom hiring of farmmachines@ Water groups

Technology Targeting

naarm

@ Which technology to Where

 @ Creation of institutions such as community Seed Banks, farmer producer organisations/farmer producer companies, custom hiring centres for farm machinery and equipment, cooperative credit societies, etc.

Research, Technology and Policy Implementation Synergy:

for Better Implementation of Carbon Positive Programs in India

India to Offer

Knowledge and Implementation for SOC, Improved Nutrient and Water Use Efficiency Models under South-South Cooperation and to Developing Countries

Thank You

